Approximating the Density of Random Differential Equations with Weak Nonlinearities via Perturbation Techniques
نویسندگان
چکیده
We combine the stochastic perturbation method with maximum entropy principle to construct approximations of first probability density function steady-state solution a class nonlinear oscillators subject small perturbations in term and driven by excitation. The nonlinearity depends both upon position velocity, excitation is given stationary Gaussian process certain additional properties. Furthermore, we approximate higher-order moments, variance, correlation functions solution. theoretical findings are illustrated via some numerical experiments that confirm our reliable.
منابع مشابه
Random fractional functional differential equations
In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
متن کاملTHE ELZAKI HOMOTOPY PERTURBATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS
In this paper, Elzaki Homotopy Perturbation Method is employed for solving linear and nonlinear differential equations with a variable coffecient. This method is a combination of Elzaki transform and Homotopy Perturbation Method. The aim of using Elzaki transform is to overcome the deficiencies that mainly caused by unsatised conditions in some semi-analytical methods such as Homotopy Perturbat...
متن کاملRandom differential inequalities and comparison principles for nonlinear hybrid random differential equations
In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities have been proved for an IVP of first order hybrid random differential equations with the linear perturbation of second type. A comparison theorem is proved and applied to prove the uniqueness of random solution for the considered perturbed random differential eq...
متن کاملSolving Fuzzy Impulsive Fractional Differential Equations by Homotopy Perturbation Method
In this paper, we study semi-analytical methods entitled Homotopy pertourbation method (HPM) to solve fuzzy impulsive fractional differential equations based on the concept of generalized Hukuhara differentiability. At the end first of Homotopy pertourbation method is defined and its properties are considered completely. Then econvergence theorem for the solution are proved and we will show tha...
متن کاملrandom fractional functional differential equations
in this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the lipschitz type condition. moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9030204